# Power Loss Reduction in Radial Distribution Systems by Optimal Capacitor Placement to Distribution Transformers

# D.Amaranatha, R. Madhan Mohan, Dr.M.Padma Lalitha

Abstract— The power loss on distribution transformers can account for a considerable portion of the overall loss. Here in This paper, proposes the method for optimal placement of capacitor banks to the distribution transformers to reduce power loss. The installation of capacitor bank locations are considered at the low voltage side of transformers. The net present value (NPV) analysis is adopted to evaluate cost benefit of the capacitor installation project. First, an explicit formula for direct calculation of power loss of radial distribution systems is derived. Then, the optimal capacitor bank placement is formulated by a Bacterial Foraging Algorithm (BFOA) model maximizing the NPV of the project subject to certain constraints. This model is suitable for being solved by commercial packages and the operational control of capacitor banks to maximize the power loss reduction, we can be simply achieved by local automatic switching according to VAR measurements.

Index Terms—Transformer, VAR, BFOA, NPV.

## I. INTRODUCTION

The operation of a power distribution system is inevitably accompanied with power loss due to the Joule effect. This loss can be very large since it occurring throughout the conductors of the distribution system as indicated in [1], it can account around 13% of the total power generation. Therefore, there have been strong incentives for utilities to try to reduce the power loss. To reduce the loss in a distribution system, one approach is to shorten the overall network resistant path that the current is passing through. This can be achieved by altering the network topology, known as reconfiguration [2]. The second approach on the other hand, is to reduce the branch current that comes from root buses to customers, as a common practice.

This can be achieved by deploying shunt capacitor banks in the network to compensate a portion of reactive power required by loads [6]–[17]. In addition to saving power loss, capacitor installations can offer some additional benefits, such as improving voltage profile, releasing network capacity, and providing reactive power reserve. This paper focuses on optimal capacitor placement in distribution networks for the interest of power loss reduction. The optimal capacitor bank placement is formulated by a Bacterial Foraging Algorithm (BFOA), where capacitor location and size are to be optimized. In terms of objective function, most of the literature minimizes the total cost of capacitor installations minus the energy loss savings [6]–[13]; in the meantime, some proposals consider multiple objectives to account for voltage violations [14]. However, very few works appraise the investment project on a more realistic cost-benefit assessment basis. In terms of solution algorithms heuristic search [6], Benders decomposition [7]-[8], Specifically tailored numerical programming technique [9], genetic algorithms (GAs) [10], [11], [14], modified differential evolution (MDE) algorithm [12], tabu search [13], and fuzzy expert systems [16] have been reported to solve the problem with success of some varying degree. In addition to that, some works with more realistic problem modeling have also been reported, such as considering the unbalanced system [9], harmonics [15], and uncertain and varying load [11]. A comprehensive review and discussion on the previous works could be found in [14] and [17]. However, it is observed that while most of previous works consider only the power loss on line sections, very few systematically takes into account the loss on distribution transformers (TRs) in placing the capacitors. In fact, the power loss on the TRs makes up an appreciable portion of a utility's overall loss. According to [3], the TRs account for 26% of transmission and distribution losses and 41% of distribution and sub transmission losses [4]. In [5], it has estimated that the TRs occupy 55% of total distribution losses.

The power loss on a TR consists of load loss and no-load loss. Load loss corresponds to the loss, while no-load loss is caused by the eddy current and hysteresis occurring by the core material of the transformer. In this paper, only load loss is considered since no-load loss mainly depends on the manufacturing and materials. To reduce the load loss of a TR, one has to reduce the current passing through its windings. By installing capacitor banks at the low-side of the TR, a portion of the reactive power demand of the loads can be directly compensated, thereby reducing the current. In addition to reducing the TR loss, the decreased current passing through the TR windings can also reduce the overall power loss of the distribution network since it can diminish the branch current coming from the root bus. In this sense, the installation of capacitor banks to TRs can be viewed as a particular case of the general capacitor placement problem, but it can provide additional advantages, which are given here.

• It can effectively free up a large portion of capacity of the distribution system, especially the TRs. Hence, scan choose TRs of smaller size, incidentally decreasing the non-load loss (in general, the larger capacity of a TR, the larger non-load loss it can produce [3]).

Mr D.Amaranatha, B.Tech graduation from S.K.D Engineering college, Gooty pursuing M.tech in EPE from Annamacharya Institute of Technology and Sciences

**Dr.M.Padma Lalitha** graduate degree in Electrical & Electronics Engineering from JNTU, Anathapur in the year 1994. Obtained Masters (PSOC) from Sri Venkateswara University,

**Mr R.Madhan Mohan**, graduation from Annamacharya Institute of Technology and Sciences and Masters from S.K.D Engineering college, Gooty. Presently working as Assistant Professor in the Department of Electrical and Electronics Engineering in AITS, RAJAMPET.

## Power Loss Reduction in Radial Distribution Systems by Optimal Capacitor Placement to Distribution Transformers

- It can significantly simplify the operational control of the capacitor banks. For example, the control can be local automatic switching of taps according to the varying reactive power load, which is highly preferred from an engineering application perspective.
- It can provide local voltage boost to customer loads, which can cancel part of the drop caused by the varying loads.

It will also be shown in this paper that the problem can be formulated by a Bacterial Foraging Algorithm (BFOA) model without much assumption and approximation.

In this paper, a method for optimal placement of capacitor bank to TRs in radial distribution networks for power loss reduction is proposed. To realistically appraise the cost benefit of the capacitor installation project, the net present value (NPV) criterion is applied. The objective is to maximize the NPV of the capacitor installation project consideration of energy saving benefits and various costs (capacitor purchase and installation cost and operating and maintenance cost) over the project lifecycle. The Capacitor banks locations are considered at the low voltage side of transformers to directly compensate the reactive power demand of the customer load. Based on an explicit formula to directly calculate the power loss of the radial distribution systems, the optimal capacitor bank placement is formulated as BFOA model, which can be readily solved by high performance commercial BFOA packages such as MATLAB. The voltage constraint is satisfied through an iterative process and simulation results have demonstrated its effectiveness.



Fig. 1.Electrical equivalent model of a TR.

The remainder of the paper is organized as follows. Section II presents a formula for direct calculation of the power loss in radial networks. Section III introduces the NPV criterion for appraising the cost benefit of the project. Section IV presents a mathematical model and its solution process. Section V presents a practical operational control strategy of the capacitor banks. Section VI presents the simulation results. Section VII concludes the whole paper.

## II. DIRECT CALCULATION OF POWER LOSSIN RADIAL NETWORKS

A TR can be electrically modeled as Fig. 1, where the current passing through the TR. Where R and X are resistance and reactance of the TR respectively, V1 and V2and are voltage magnitudes at high- and low-side of the TR, respectively.

The power loss on a conductor can be decomposed into two parts, one caused by real current, and the other caused by reactive current, and shown as

$$F_{loss} = (I_{R}^{-} + I_{X}^{-}).R$$
$$= I_{R}^{2} R + I_{X}^{2} R = P_{loss,R} + P_{loss,X}$$
(1)

For the TR shown in Fig. 1, the power loss is

$$\begin{split} \mathbf{P}_{\text{loss}} &= \mathbf{P}_{\text{loss},R}^{\text{TR}} \left( \mathbf{i} \right) + \mathbf{P}_{\text{loss},X}^{\text{TR}} \left( \mathbf{i} \right) \\ &= \left( \frac{\mathbf{p}_{\text{Li}}}{\mathbf{v}_{\text{i}2}} \right)^2. \ \mathbf{R}_{\text{i}} + \left( \frac{\mathbf{Q}_{\text{Li}}}{\mathbf{v}_{\text{i}2}} \right)^2. \ \mathbf{R}_{\text{i}} \end{split} \tag{2}$$

The capacitor bank, when installed at the low-side of the TR, can directly compensate the reactive power demand, thereby reducing  $P_{Loss}$ , X

In this paper, the distribution network is assumed to be three-balanced, and current harmonics are not considered. Given a feeder with many TRs (see Fig. 2).



Fig. 2.Single-line diagram of a feeder in a radial distribution network.

The power loss  $P_{Loss}$ , X of line section connecting bus and bus can be calculated by

$$P_{X,loss}^{\text{Line}}(i,i+1) = \left(\frac{Q_i}{V_{i1}}\right)^2 R_{i,i+1}$$
(3)

Where  $R_{i,i+1}$  is the resistance of line section between node *i* and node *i*+1,  $V_{i1}$  is the voltage magnitude of node *i* and is equivalent to that of the high-side of Tri, and Qi is the total reactive powers flowing out of node and can be roughly accounted as

$$Q_i = \sum_{n=i+1}^{N} Q_{\text{Ln}} \tag{4}$$

Where  $Q_{Ln}$  is the reactive power load at TR n.

The total power loss caused by reactive power demand of the system can then be explicitly calculated as  $\mathbf{P} = \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P}$ 

 $\mathbf{P}_{\text{loss},X} = \sum_{i=1}^{N} \mathbf{P}_{\text{loss},X}^{\text{TR}}(i) + \sum_{i=0}^{N-1} \mathbf{P}_{\text{loss},X}^{\text{Line}}(i,i+1)$ 

$$= \sum_{i=1}^{N} \left( \frac{\mathbf{Q}_{\text{Li}}}{\mathbf{V}_{i2}} \right)^2 \cdot \mathbf{R}_i + \sum_{i=0}^{N-1} \left( \frac{\sum_{n=i+1}^{N} \mathbf{Q}_{\text{Ln}}}{\mathbf{V}_{i1}} \right)^{-1} \mathbf{R}_{i,i+1}$$
(5)

Where  $V_1$  and  $V_2$  are determined by running initial power flow.

The annual cost (\$) due to the power loss is calculated by 
$$C_t = \widehat{P}_{loss,X}$$
.  $F_{loss}$ .  $K_E$ .8760 (6)

Where  $K_E$  is the energy cost (/kWh) and  $F_{Loss}$  is the power loss factor which is the ratio between the average power loss and the peak power loss and is given as

$$F_{loss} = \frac{P_{loss,X}}{\hat{p}_{loss,X}}$$
(7)

To compute  $F_{LOSS}$ , a segment of historical load profile over a certain period (e.g., last one year) is obtained from the metering database, and the power loss at each time point is calculated by running power flow. The peak power loss  $\hat{P}_{loss,X}$  is the power loss at the peak load point and the average power loss  $\overline{P}_{LOSS,X}$  is the average value of all of the time points.

As Fig. 3 illustrates, when installing capacitor bank at the low-side of the TR, the reactive power passing through the TR windings can be reduced by the capacitor capacity.

The power loss after capacitor bank installation becomes

$$P_{loss,x}' = \sum_{i=1}^{N} \left( \frac{Q_{\text{Li}-\text{L}_{i},\text{Q}_{\text{C}}}X_{i}}{V_{i2}} \right)^{2} \cdot R_{i}$$
  
$$\sum_{i=0}^{N-1} \left( \frac{\sum_{n=i+1}^{N} (Q_{\text{Ln}-\text{L}_{n},\text{Q}_{\text{C}}}X_{n})}{V_{i1}} \right)^{2} R_{i,i+1}$$
(8)

Where  $Q_c$  is the capacity of capacitor per unit size,  $L_i$  is the integer variable representing the number of the capacitor modules in a bank, and  $X_i$  is the binary decision variable indicating whether to install the capacitor bank at TR (1: yes; 0: no). The product of  $L_i$ ,  $Q_c$  and  $X_i$  equals the reactive power compensation capacity to the TR.

## III. NPV ANALYSIS

To practically evaluate the economic value of the capacitor installation project, one needs to compare the expected revenue and investment costs over the whole project lifecycle.

In this paper, the NPV criterion is adopted for cost-benefit analysis of the project. The NPV discounts each year's cash flow back to the present and then deducts the initial investment, giving a net value of the project in today's dollars. When the NPV is positive, the project can be accepted since it means the project can add value to the utility; otherwise, the project should be rejected because it will subtract the value to the utility. The NPV criterion can appraise a long-term project with the following advantages [18].

- It deals with cash flows rather than accounting profits.
- The accepted project will increase the value of the utility, since only the projects with positive NPV are accepted.
- It recognizes the time value of money and allows for comparison of the benefits and costs in a logical manner.
- It can incorporate risk into the assessment of a project, either by adjusting the expected cash flows or by adjusting the discount rate.

After the capacitor banks installation, the new annual cost in dollars is

 $C_t = P_{loss,x}$ .  $F_{loss}$ .  $K_E X8760$  (9) The annual savings by applying capacitor bank to TRs is  $b_t = C_t - C_t$  (10)

It is worth mentioning that other savings such as those produced by released network capacity can also be added in (10), but this paper only considers the power loss reduction. Considering the O&M costs of the capacitor banks, the net annual profit should be

$$B_{t}=b_{t}-OM_{t}$$
(11)

$$OM_{t} = \sum_{i=1}^{N} X_{i} \cdot K_{0}$$
(12)

Where  $K_0$  is the annual O&M cost of capacitor banks for eachTR in dollars.

For the capacitor installation project, the NPV can be calculated as follows:



Where  $B_t$  is the annual net cash flow in year t, d is the discount rate, T is the project's expected life, and IO is the total initial investment outlay of cash including capacitor purchase cost and installation cost and is given as

$$IC = \sum_{i=1}^{N} X_i K_i$$
 (15)

$$PC = \sum_{i=1}^{N} L_i \cdot X_i \cdot K_p$$
(16)

Where  $K_p$  and  $K_l$  stand for the purchase cost of the capacitorsper unit size and installation cost for each TR, respectively.

Equation (16) is applied when only a fixed capacitor bank unit size is adopted. In practice, capacitor banks of larger unit size can have lower per KVar price. Hence, capacitor banks with different unit sizes may be combined during installation.

Generally, the capacitor cost function is a piecewise function as the real line shows in Fig. 4.

To consider the varying purchase cost of the capacitor depending on the capacitor unit size, the piecewise cost function can be approximated by a linear function as the dash line shows in Fig. 4. PC can then be calculated by

$$PC = \sum_{i=1}^{N} L_i X_i (K_p - \tau L_i)$$
(17)

Where  $\gamma$  is the equivalent slope of the linearized cost function and  $K_p$  here corresponds to the minimum capacitor unit size $Q_c^{min}$ .

#### IV. MODEL FORMULATION AND SOLUTION

The mathematical model of the capacitor installation project is to maximize the NPV subject to certain constraints so as to obtain the maximum economic benefits in terms of investment and revenue. The mathematical model is presented as follows:

Max NPV=
$$\sum_{t=1}^{T} \frac{(c_t - c_t) - 0M_t}{(1+d)^t} - (PC + IC)$$
 (18)

Subject to the following.

• For fixed capacitor:  

$$0 \le L_i$$
.  $Q_C$ .  $X_i \le Q_{Li}^{min}$  (19)

•For controlled capacitor:  

$$Q_{Li}^{\min} \leq L_i, Q_C, X_i \leq Q_{Li}^{\max}$$
(20)

The NPV is the sum of the cash flow of each year in the expected project lifetime; thus, the growth of load demand and energy cost should also be considered in calculating the term for each year.



Fig. 5.Flowchart for satisfying voltage constraints.

The constraint (19) means that, if the capacitor size is fixed, the capacity should be less than the minimum reactive power demand at the TR, and (20) means that, if the capacitor size is adjustable, e.g., automatically switched by the controller, the capacity should be between the minimum and maximum reactive power load of the TR.

It can be seen that due to the multiplying of the decision variables L and X in (8), (16), (17), (19), and (20), the problem constitutes Bacterial Foraging Algorithm (BFOA) model which is difficult to solve. We then rewrite the model to be a MIQP formulation, which is much easier to solve. To this end, the binary decision variable X in (8), and (16), and (17) is removed and constraints (19) and (20) are rewritten as

| $0 \leq L_i \cdot Q_C \leq Q_{Li}^{min} \cdot X_i$                    | (21) |
|-----------------------------------------------------------------------|------|
| $Q_{Li}^{\min}$ . $X_i \leq L_i$ . $Q_C \leq Q_{Li}^{\max}$ . $X_i$ . | (22) |

In such a way, the model becomes a BFOA one while the same mathematical characteristic is maintained. It is worth mentioning that, although the quadratic terms can be further linearized to yield a mixed-integer linear programming (BFOA) model that is further easier to solve, we retain the quadratic formulations since high-performance BFOA solvers are currently available in most commercial packages such as MATLAB. It should be noted that the voltage constraint is not directly included in the optimization model. Rather, the voltage is satisfied through an iterative process shown in Fig. 5. Before capacitor deployments, the bus voltage should be already regulated at a normal level. After capacitor banks are installed, the voltage magnitude of the low-side of TR is generally improved rather than degraded since a portion of reactive power load is compensated. Hence, it is usually needed to examine only the overvoltage case after capacitor installed. Actually, the voltage boosting is rather limited since the size of capacitor bank is constrained by (19) and (20). According to Fig. 5, once the optimization results are obtained, power flow simulations are then performed to examine if overvoltage appears (note that both peak and

bottom load conditions can be examined, for automatically switched capacitor banks, their output in bottom load condition should be accordingly decreased to avoid inverse reactive power injection). If the overvoltage occurs for some load buses, the voltage can be regulated to normal level by adjusting the local customer TR tap changers this can be implemented during capacitor installation stage. Generally, a TR tap changer has a broad range to adjust, however, when the TR tap changer reaches limits and can no longer regulate the voltage, it is then needed to modify constraints (19) and (20) by a smaller upper limit and resolve the optimization model. This process iterates until all of the voltage constraints are satisfied.

#### V. OPERATIONAL CONTROL OF CAPACITOR BANKS

As already mentioned, the installation of capacitor banks to TRs can simplify the operational control of the capacitor banks. Unlike complicated coordination of switching actions of the capacitors in a distribution system [9], the control of the TR capacitor banks to maximize the reduction of the power loss can be approximated by locally switching the capacitor series according to the reactive power load sensed by the capacitor controller [3]. A simple switching strategy can be as follows.

# **Operational control rule**

• For*Q<sub>ci</sub> < Q<sub>Li</sub>*:

Switch up to a tap that minimizes  $Q_{ci} - Q_{Li}$ .

• For**Q<sub>Ci</sub> > Q<sub>Li</sub>:** 

Switch down to a tap that minimizes  $|Q_{Li} - Q_{ci}|$ .

Here,  $Q_{Li}$  is the reactive power demand at TR, sensed by the controller, and is the output of the capacitor bank.

The above control strategy can locally minimize the reactive current of each TR and, thus, can almost minimize the reactive current of line sections which is the sum of the reactive currents of the individual TRs. This control strategy can also contribute to voltage regulation as it avoids inverse reactive power injection during light load conditions.

## VI. SIMULATION RESULTS

The proposed methodology has been practically implemented for power loss reduction of Macau medium voltage (MV) distribution network. MV herein means the voltage level from the 11 kV side of a 66/11 kV transformer to 400 V side at 11kV distribution transformer of the Macau distribution system.



Fig. 6.One-line diagram of the test system.

The simulation is conducted on a 32-bit PC with 2.53-GHz CPU and 2G RAM. The commercial MIP package MATLAB is used to solve the optimization model.

To illustrate the usage of the proposed method, its application to a portion of the network with five feeders/laterals and 34 TRs is presented here. This network can be viewed as 69-bus system; its one-line diagram is shown in Fig. 6, and its parameters are given in Tables I and II. The base MW is 100 MW, the base voltage is 11 kV, and the voltage set-point of bus #1 is 1.01p.u. Other relevant parameters involved in the optimization are given in Table III. Stated otherwise, the values in Table III do not necessarily reflect the reality of the Macau distribution system. TABLE I

PARAMETERS OF LINE SECTIONS OF THE STUDIED NETWORK

| Line secti | on        |          |          |           |  |
|------------|-----------|----------|----------|-----------|--|
| Sending    | Receiving | R(p.u.)  | X(p.u.)  | B(p.u.)   |  |
| end        | end       | u / u /  |          | -         |  |
| 1          | 2         | 0.009686 | 0.015187 | 0.000184  |  |
| 2          | 3         | 0.006954 | 0.010904 | 0.000132  |  |
| 3          | 4         | 0.006209 | 0.009736 | 0.000118  |  |
| 4          | 5         | 0.011672 | 0.018303 | 0.000222  |  |
| 5          | 6         | 0.003229 | 5.06E-03 | 6.15E-05  |  |
| 6          | 7         | 0.007699 | 0.012072 | 0.000147  |  |
| 4          | 9         | 0.003229 | 5.06E-03 | 6.15E-05  |  |
| 9          | 10        | 0.017136 | 0.02687  | 0.000326  |  |
| 10         | 11        | 0.009686 | 0.015187 | 0.000184  |  |
| 11         | 12        | 0.006954 | 0.010904 | 0.000132  |  |
| 12         | 13        | 0.006209 | 0.009736 | 0.000118  |  |
| 13         | 14        | 0.011672 | 0.018303 | 0.000222  |  |
| 1          | 15        | 0.040977 | 0.68543  | 0.000822  |  |
| 15         | 16        | 0.029802 | 0.04985  | 0.000598  |  |
| 16         | 17        | 0.010927 | 0.018278 | 0.000219  |  |
| 17         | 18        | 0.023593 | 0.039464 | 0.000473  |  |
| 18         | 19        | 0.007947 | 0.013293 | 0.000159  |  |
| 19         | 20        | 0.0226   | 0.037803 | 0.000453  |  |
| 20         | 21        | 0.00596  | 0.00997  | 0.00012   |  |
| 21         | 22        | 0.000993 | 0.001558 | 1.89E-05  |  |
| 16         | 23        | 0.004222 | 0.00662  | 8.04E-05  |  |
| 23         | 24        | 0.006209 | 0.009736 | 0.000118  |  |
| 24         | 25        | 0.006954 | 0.010904 | 0.000132  |  |
| 25         | 26        | 0.00447  | 0.00701  | 8.51E-05  |  |
| 1          | 27        | 0.009934 | 0.015577 | 0.000189  |  |
| 27         | 28        | 0.00298  | 0.004673 | 5.67E-05  |  |
| 28         | 29        | 0.009934 | 0.015577 | 0.000189  |  |
| 29         | 30        | 0.005464 | 0.008567 | 0.000104  |  |
| 30         | 31        | 0.011424 | 0.17913  | 0.000217  |  |
| 31         | 32        | 0.001987 | 0.003115 | 3.78E-05  |  |
| 32         | 33        | 0.006457 | 0.010125 | 0.000123  |  |
| 33         | 34        | 0.00298  | 0.004673 | 5.67E-0.5 |  |
| 34         | 35        | 0.00298  | 0.004673 | 5.67E-0.5 |  |

First, the proposed formula for direct calculation of power loss of radial distribution systems is verified. The initial overall power loss of the studied network is respectively calculated by power flow method and the proposed formula, and the results are 129.9 and 130.5 kW, respectively, yielding a very small overall percentage error of 0.46%. The calculated loss of each component of the studied network is shown in Fig. 7, where ID 1–34 for line sections and ID 35–68 for TRs. It can be seen that the calculation error of the proposed formula only occurs at line sections ,and the accuracy is sufficiently high for practical use.

## TABLE II

| TR<br>Bus | Peak loa | d       | Bottom load |         | R<br>(p.u.) | X<br>(p.u.) |
|-----------|----------|---------|-------------|---------|-------------|-------------|
|           | P(kw)    | Q(kVar) | P(kw)       | Q(kVar) |             |             |
| 2         | 19       | 11.7    | 8.0         | 2.6     | 0.71875     | 0.06        |
| 3         | 409.1    | 254.2   | 50.8        | 37.2    | 1.28        | 0.06        |
| 4         | 260.9    | 203     | 82.2        | 56.2    | 0.71875     | 0.06        |
| 5         | 547.7    | 243.3   | 37.7        | 30.2    | 0.71875     | 0.06        |
| 6         | 185.4    | 153.4   | 14.2        | 12.6    | 0.71875     | 0.06        |
| 7         | 260.1    | 146.1   | 19.7        | 15.6    | 1.83925     | 0.04        |
| 8         | 445.1    | 157.4   | 183.7       | 99.5    | 1.28        | 0.06        |
| 9         | 493.1    | 203     | 190.2       | 83.7    | 1.28        | 0.06        |
| 10        | 186.3    | 67.7    | 68.0        | 26.9    | 1.28        | 0.06        |
| 11        | 342.8    | 149.3   | 114.8       | 55.4    | 1.83925     | 0.04        |
| 12        | 319.8    | 113.1   | 93.2        | 24.2    | 1.83925     | 0.04        |
| 13        | 68.2     | 21.9    | 31.5        | 9.9     | 1.28        | 0.06        |
| 14        | 244.2    | 87      | 116.3       | 42.3    | 1.28        | 0.06        |
| 15        | 499.4    | 196.5   | 445.8       | 168.9   | 0.71875     | 0.06        |
| 16        | 717.5    | 406.1   | 439.6       | 212.2   | 0.71875     | 0.06        |
| 17        | 659.5    | 431.7   | 389.8       | 345.0   | 0.71875     | 0.06        |
| 18        | 765.6    | 348.4   | 304.7       | 158.7   | 0.71875     | 0.06        |
| 19        | 873.5    | 551.9   | 306.2       | 214.9   | 0.71875     | 0.06        |
| 20        | 830.6    | 253     | 456.2       | 154.1   | 0.71875     | 0.06        |
| 21        | 988      | 280.5   | 410.2       | 119.5   | 0.71875     | 0.06        |
| 22        | 346.6    | 163     | 101.3       | 64.7    | 1.28        | 0.06        |
| 23        | 138.8    | 45.9    | 62.9        | 20.3    | 1.83925     | 0.04        |
| 24        | 183      | 41.2    | 55.7        | 11.1    | 1.83925     | 0.04        |
| 25        | 839.6    | 190.7   | 267.9       | 64.2    | 0.71875     | 0.06        |
| 26        | 13.9     | 4.3     | 5.1         | 1.2     | 0.71875     | 0.06        |
| 27        | 112.5    | 14      | 62.6        | 5.6     | 1.28        | 0.06        |
| 28        | 86.1     | 16.2    | 8.5         | 3.0     | 1.28        | 0.06        |
| 29        | 774.6    | 358.1   | 81.5        | 44.9    | 0.71875     | 0.06        |
| 30        | 461.1    | 175.8   | 53.1        | 11.2    | 0.71875     | 0.06        |
| 31        | 242.2    | 59.5    | 125.7       | 40.6    | 0.71875     | 0.06        |
| 32        | 48.1     | 0.1     | 66.3        | 3.0     | 1.83925     | 0.04        |
| 33        | 348.2    | 106.7   | 140.3       | 52.4    | 1.28        | 0.06        |
| 34        | 0.7      | 0.8     | 0.5         | 0.6     | 1.28        | 0.06        |
| 35        | 394.8    | 126.6   | 117.7       | 65.5    | 1.28        | 0.06        |
| Total     | 13106    | 5582.1  | 4906.0      | 2257.8  |             |             |

TABLE III PARAMETERS IN CALCULATION

| Parameter                                                       | Sign                          | Value |
|-----------------------------------------------------------------|-------------------------------|-------|
| Minimum unit size of capacitor(kVar)                            | Q <sub>c</sub> <sup>min</sup> | 25    |
| Purchase cost of capacitor per unit size(Q <sup>max</sup> )(\$) | Kp                            | 5000  |
| Slope of the linearized capacitor purchase cost                 | r                             | 30    |
| function                                                        |                               |       |
| Capacitor installation cost for each TR (\$)                    | Kt                            | 7500  |
| O&M cost of capacitor for each TR(\$/year)                      | OM <sub>t</sub>               | 800   |
| Energy cost (\$/year)                                           | K <sub>E</sub>                | 1.136 |
| Project life time(year)                                         | Т                             | 10    |
| Loss factor                                                     | F <sub>loss</sub>             | 0.554 |
| Inflation rate                                                  | р                             | 5.0%  |
| Discount rate                                                   | d                             | 7.0%  |
| Load growth rate                                                | 1                             | 6.7%  |

It is also worth mentioning that the power loss on TRs accounts for a significant portion of the whole power loss in this feeder: 58.9%. Using the proposed method, the optimal capacitor placement scheme for the studied network is calculated. The optimization results are given in Table IV. A total of 13 TRs are installed with capacitor banks and the total capacity is 3300 kVar.



Fig. 7.Initial power loss at each component of the studied network.

## TABLE IV CAPACITOR PLACEMENT OPTIMIZATION RESULTS

| TR bus | Capacity (kVar) |
|--------|-----------------|
| 3      | 199.768         |
| 5      | 175.003         |
| 7      | 123.421         |
| 9      | 149.845         |
| 11     | 125.001         |
| 16     | 374.951         |
| 17     | 400.288         |
| 18     | 325.866         |
| 19     | 525.236         |
| 20     | 225.464         |
| 21     | 273.718         |
| 22     | 150             |
| 29     | 271.963         |

TABLE V SUMMARY OF OPTIMIZATION RESULTS

| Parameters                      | Before<br>capacitor<br>placement | After<br>Capacitor<br>placement |  |
|---------------------------------|----------------------------------|---------------------------------|--|
| $\hat{P}_{loss,x}(\mathrm{KW})$ | 20                               | 2                               |  |
| Power factor                    | 0.911                            | 0.949                           |  |
| Total initial<br>investment(\$) | 707936.55                        |                                 |  |
| Total benefit (\$)              | 1895965.658                      |                                 |  |
| NPV(\$)                         | 1188029.108                      |                                 |  |
| Computation time(s)             | 0.644717                         |                                 |  |

Table V summarizes the optimization results. It can be seen that, after the capacitor installations, the peak power loss

is significantly reduced, and the power factor is improved in the meantime. Fig. 8 shows the power loss caused by reactive  $\hat{P}_{loss,X}$  current before and after the capacitor installations for each component. It can be seen that the capacitor banks have not only reduced the loss on TRs but also line sections. In the economic aspect, the initial investment (IO) of the project is \$708,660, and the total benefit is \$1,896,865, yielding a positive NPV of\$1,188,205, which means that the project can add a net value of \$1,188,205 to the utility over ten years.



Fig. 8. Peak power loss  $\hat{P}_{loss,X}$  of each component before and after capacitor installations



Fig. 9. Load bus voltage magnitudes in different conditions.

The load bus voltage magnitudes are also examined, and the results are shown in Fig. 9. It can be seen that, after the capacitor deployment, the system voltage level is improved, especially for the buses where a capacitor is installed, and no over voltage appears. In addition, it is worth mentioning that the proposed method is quite computationally efficient, as the solution time of the model using MATLAB for the studied network is only 0.64 s.

## VII. CONCLUSION

Power loss due to the Joule effect in a distribution system can be very large, where the loss on TRs can account for a considerable portion. This paper proposes a method for optimal placement of capacitor banks to TRs for power loss reduction in radial distribution systems. The problem is modeled as maximizing the NPV of the capacitor installation project subject to certain constraints and is formulated as an BFOA model based on an explicit formula for direct calculation of the power loss of the radial distribution system. The model can be solved by commercial BFOA packages very efficiently. The proposed methodology has been practically implemented in Macau MV distribution system. Its application to a portion of Macau system is illustrated in this paper, and the results show that by installing capacitor banks at optimized locations, the power loss of the network can be significantly reduced, the voltage level can be

improved, and a positive large NPV can be obtained, which adds values to the utility.

engineering colleges at South India. His fields of interest is Distributed Generation.

#### ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for reviewing this paper and providing numerous valuable comments and suggestions for improving this paper.

## REFERENCES

- J. B. Bunch, R. D. Miller, and J. E. Wheeler, "Distribution system integrated voltage and reactive power control," IEEE Trans. Power App.Syst., vol. PAS-101, no. 2, pp. 284–289, Feb. 1982.
- [2] M. E. Baran and F. F. Wu, "Network reconfiguration in distribution systems for loss reduction and load balancing," IEEE Trans. Power Del., vol. 4, no. 2, pp. 1401–1407, Apr. 1989.
- [3] T. A. Short, Electric Power Distribution Equipment and Systems. Boca Raton, FL, USA: CRC/Taylor & Francis, 2006.
- [4] P. R. Barnes, J.W.VanDyke, B. W. McConnell, S.M. Cohn, and S. LPurucker, "The feasibility of upgrading utility distribution transformers during routine maintenance," Tech. Rep. ORNL-6804/R1, Feb. 1995.
- [5] J. J. Grainger and T. J. Kendrew, "Evaluation of technical losses on electric distribution systems," in Proc. 10th Int. Conf. Electricity Distrib., May 1989, pp. 483–493



**Mr D.Amaranatha**, Received his B.Tech graduation from S.K.D Engineering college, Gooty and Now he is pursuing M.tech in EPE from Annamacharya Institute of Technology and Sciences. He has published research papers in 1 International conferences . He has participated several workshops conducted by Annamacharya Institute of Technology and Sciences, Razampeta, Cuddapah (AP). His fields of interest are Electrical Distributed and Generation



**Dr.M.Padma Lalitha** obtained graduate degree in Electrical & Electronics Engineering from JNTU, Anathapur in the year 1994. Obtained Masters (PSOC) from Sri Venkateswara University, Tirupathi in 2002 and awarded doctorate or "Soft Computing Techniques for optimal DG placement in Radial Dispensation System " from Sri Venketeswara University, Tirupathi. in 2011 and Having 19 years of teaching experience in graduate and post graduate level. Editorial board member for Reputed International Journals. Has 55 international journal publications to her credit and also published two books. Presently working as Professor and HOD of EEE department in AITS, Rajampet. Areas of interest include radial distribution systems, soft computing in power systems, ANN, FACTS.



Mr R.Madhan Mohan, received his graduation from Annamacharya Institute of Technology and Sciences and Masters from S.K.D Engineering college, Gooty. Presently working as Assistant Professor in the Department of Electrical and Electronics Engineering in AITS, RAJAMPET. He has published research papers in 4 International conferences. He has participated several workshops conducted by various